Differentiability

Consider the function given by

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y^{2}}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\
0 & ; & (x, y)=(0,0)
\end{array}\right.
$$

The surface and the contour plot are shown below.

This function is continuous at $(0,0)$. This is true since

$$
|f(x, y)|=\left|\frac{x y^{2}}{x^{2}+y^{2}}\right| \leq \frac{|x|\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} \leq|x|
$$

The Squeeze Theorem implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$.
The first partial derivatives are given by

$$
\begin{gathered}
f_{x}(x, y)=\frac{\left(x^{2}+y^{2}\right) y^{2}-x y^{2}(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2} y^{2}+y^{4}-2 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{y}(x, y)=\frac{\left(x^{2}+y^{2}\right)(2 x y)-x y^{2}(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x^{3} y+2 x y^{3}-2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}} .
\end{gathered}
$$

Note that as long as $(x, y) \neq(0,0)$ these exist and are continuous. Therefore $f(x, y)$ is differentiable for all $(x, y) \neq(0,0)$. Also $f_{x}(0, y)=1$ and $f_{x}(x, 0)=0$ and $f_{y}(x, 0)=$ $f_{y}(0, y)=0$.

At the point $(0,0)$ we need to use the definition of the partial derivative to determine if f_{x} or f_{y} exist there. In this way we have

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
$$

and

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0} \frac{0-0}{k}=0 .
$$

This shows that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but are they continuous? Note

$$
f_{x}(x, x)=0, \quad f_{x}(x, \sqrt{x})=\frac{x\left(x-x^{2}\right)}{\left(x^{2}+x\right)^{2}}=\frac{x^{2}(1-x)}{x^{2}(x+1)}=\frac{1-x}{1+x} .
$$

Therefore $\lim _{x \rightarrow 0} f(x, x)=0$, but $\lim _{x \rightarrow 0} f(x, \sqrt{x})=1$ implying that $f_{x}(x, y)$ is not continuous at $(0,0)$. Similarly

$$
f_{y}(x, 0)=0, \quad f_{y}(x, x)=\frac{2 x^{4}}{4 x^{4}}=\frac{1}{2}
$$

Therefore $\lim _{x \rightarrow 0} f_{y}(x, 0)=0$, but $\lim _{x \rightarrow 0} f_{y}(x, x)=\frac{1}{2}$ implying that $f_{y}(x, y)$ is not continuous at (0,0).

In order to show that f is not differentiable we need to use the definition of differentiable.
Definition A function f is differentiable at the point (a, b) if there is a linear function $L(x, y)=m(x-a)+n(y-b)$ such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-f(a, b)-L(a+h, b+h)}{\sqrt{h^{2}+k^{2}}}=0 .
$$

If f is differentiable then $m=f_{x}(a, b)$ and $n=f_{y}(a, b)$. For the function we are considering here we must have $m=f_{x}(0,0)=0$ and $n=f_{y}(0,0)=0$ and so $L(x, y)=0(x-0)+0(y-0)=$ 0 . We must then look at the following expression.

$$
\frac{f(h, k)-f(0,0)-L(h, k)}{\sqrt{h^{2}+k^{2}}}=\left(\frac{h k^{2}}{h^{2}+k^{2}}\right) \frac{1}{\sqrt{h^{2}+k^{2}}}=\frac{h k^{2}}{\left(h^{2}+k^{2}\right)^{3 / 2}} .
$$

If $h=k$ this expression becomes

$$
\frac{h^{3}}{\left(h^{2}+h^{2}\right)^{3 / 2}}=\frac{h^{3}}{\left(2 h^{2}\right)^{3 / 2}}=\frac{h^{3}}{h^{3} 2^{3 / 2}}=\frac{1}{2^{3 / 2}} .
$$

and if $h=0, k \neq 0$ this expression is 0 . This shows that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{h k^{2}}{\left(h^{2}+k^{2}\right)^{3 / 2}} \quad \text { does not exist. }
$$

Therefore f is not differentiable at $(0,0)$.
We do have that since $f_{x}(0,0)=f_{y}(0,0)=0$ then $\nabla f(0,0)=0 \mathbf{i}+0 \mathbf{j}$. So if $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ is any unit vector the directional derivative at $(0,0)$ is

$$
D_{\mathbf{u}} f(0,0)=\nabla f(0,0) \cdot \mathbf{u}=0\left(u_{1}\right)+0\left(u_{2}\right)=0 .
$$

This shows that the directional derivative of f exists at $(0,0)$, but f is not differentiable at $(0,0)$.

Consider the function given by

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\
0 & ; & (x, y)=(0,0)
\end{array}\right.
$$

The surface and the contour plot are shown below.

This function is continuous at $(0,0)$ since

$$
|f(x, y)|=\left|\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}\right| \leq \frac{|x y|\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=|x y|
$$

The Squeeze Theorem then implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$.
The partial derivatives are then

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\left(x^{2}+y^{2}\right)\left(3 x^{2}-y^{3}\right)-\left(x^{3} y-x y^{3}\right)(3 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{3 x^{4} y+3 x^{2} y^{3}-x^{2} y^{3}-y^{5}-2 x^{4} y+2 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
f_{y}(x, y) & =\frac{\left(x^{2}+y^{2}\right)\left(x^{3}-3 x y^{2}\right)-\left(x^{3} y-x y^{3}\right)(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{5}+x^{3} y^{2}-3 x^{3} y^{2}-3 x y^{4}-2 x^{3} y^{2}+2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Both of these are continuous if $(x, y) \neq(0,0)$ and so f is differentiable for $(x, y) \neq(0,0)$. Note that $f_{x}(x, 0)=0, f_{x}(0, y)=\frac{-y^{5}}{y^{4}}=-y, f_{y}(x, 0)=\frac{x^{5}}{x^{4}}=x, f_{y}(0, y)=0$. At the point $(x, y)=(0,0)$ we use the definition of the partial derivatives.

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
$$

and

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0} \frac{0-0}{k}=0 .
$$

Therefore $f_{x}(0,0)=f_{y}(0,0)=0$. The partial derivatives are also continuous at $(0,0)$ since

$$
\begin{aligned}
\left|f_{x}(x, y)\right| & \leq \frac{|y|\left(x^{4}+2 x^{2}+y^{2}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{|y|\left(2 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \leq \frac{|y|\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2|y|\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =3|y|
\end{aligned}
$$

The Squeeze Theorem then implies that $\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)=0=f_{x}(0,0)$. A similar argument given below shows that $\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y)=0=f_{y}(0,0)$.

$$
\begin{aligned}
\left|f_{y}(x, y)\right| & \leq \frac{|x|\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{|x|\left(2 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \leq \frac{|x|\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2|x|\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =3|x| .
\end{aligned}
$$

This function is quite special since

$$
\frac{\partial^{2} f}{\partial x \partial y}(0,0)=\lim _{k \rightarrow 0} \frac{f_{x}(0, k)-f_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{-k-0}{k}=-1
$$

and

$$
\frac{\partial^{2} f}{\partial y \partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h-0}{h}=1 .
$$

This shows that the second mixed partial derivatives at $(0,0)$ in one order are different from the other order, i.e.

$$
f_{x y}(0,0)=-1 \neq 1=f_{y x}(0,0)
$$

