Differentiability

Consider the function given by
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0 ; (2,y) = (0,0)

The surface and the contour plot are shown below.

) (xay) # (070)

5r

N

w




This function is continuous at (0,0). This is true since
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|f(x7y)‘ = x2+y2

< |z|.

The Squeeze Theorem implies that ( l)irr%O ) f(z,y) =0= f(0,0).
m7y - K

The first partial derivatives are given by
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Note that as long as (z,y) # (0,0) these exist and are continuous. Therefore f(z,y) is
differentiable for all (z,y) # (0,0). Also f,(0,y) = 1 and f,(z,0) = 0 and f,(z,0) =
fy(07 y) =0.

At the point (0,0) we need to use the definition of the partial derivative to determine if f,
or f, exist there. In this way we have

f(h,0) — £(0,0) 0-0

£2(0,0) = lim - —1im 20—,
and £(0.%) — £(0,0) 0-0
14(0,0) = lim 2 = lim ——=0.

This shows that f,(0,0) and f,(0,0) exist, but are they continuous? Note

r(x—2®) 2*(l-2) l-ux

(22 +2)2  22(x+1) 1+2

folw,2) =0, folz,Va) =

Therefore liH(l) f(z,z) =0, but liIr(l) f(x,+/x) =1 implying that f.(z,y) is not continuous at

(0,0). Similarly
20t 1
fy(.f,O) = O, fy(x,x) = @ = 5
1
Therefore lir% fy(z,0) =0, but liné fy(z,x) = 3 implying that f,(z,y) is not continuous at
(0,0).
In order to show that f is not differentiable we need to use the definition of differentiable.

Definition A function f is differentiable at the point (a,b) if there is a linear function
L(z,y) = m(x — a) + n(y — b) such that

fla+h,b+k)— f(a,b) — L(a+ h,b+ h)

lim =0.
(h,k)—(0,0) Vh? + k2




If f is differentiable then m = f,(a,b) and n = f,(a,b). For the function we are considering
here we must have m = f,(0,0) = 0 and n = f,(0,0) = 0 and so L(x,y) = 0(z—0)+0(y—0) =
0. We must then look at the following expression.

f(h,k) — £(0,0) — L(h, k) hi? 1 R
VI? + k2 a (h2+k2> VIZ+ k2 (B2 4 k232

If h = k this expression becomes

h3 h3 h3 1

(h2 +h2)3/2 o (2h2)3/2 T p393/2 7 93/2°

and if h = 0, k # 0 this expression is 0. This shows that

li he d t exist
1m D a———— 0es Not ex1st.
(h,k)—(0,0) (h? 4 k2)3/2

Therefore f is not differentiable at (0, 0).
We do have that since f,(0,0) = £,(0,0) = 0 then Vf(0,0) = 0i+ 0j. So if u = uyi + usj is
any unit vector the directional derivative at (0,0) is

Dyuf(0,0) = Vf(0,0) - u=0(u) + 0(usz) = 0.

This shows that the directional derivative of f exists at (0,0), but f is not differentiable at
(0,0).



Consider the function given by

ry(z* — y?)
— 5 a2 (z,y) # (0,0)
flay) =4 © 7Y
0 ; (z,y) = (0,0)

The surface and the contour plot are shown below.
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This function is continuous at (0,0) since

zy(a? — y°)
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(2, y)| = = |zyl.

The Squeeze Theorem then implies that ( 1)iII?(lO 0 f(z,y) =0= f(0,0).
m’y - b

The partial derivatives are then
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Both of these are continuous if (z,y) # (0,0) and so f is differentiable for (x,y) # (0,0).

—qP 5
Note that f.(x,0) =0, f.(0,y) = v —y, fy(z,0) = % =z, f,(0,y) = 0. At the point

4
(z,y) = (0,0) we use the definition of the partial derivatives.

f(h,0) — £(0,0) 0-0

f=(0,0) = lim i = Jim == =0
and £(0.%) — £(0,0) 0-0
MO0 =T i 0

Therefore f,(0,0) = £,(0,0) = 0. The partial derivatives are also continuous at (0, 0) since



ly|(z* + 222 + 2 +y*)  |y[(22%y?)

|fx($7y)| < (:L,Z + yz)z (372 + y2)2
(2 + %) 2yl + ) (2* + )
(22 +y?)? (22 +y?)?
= 3lyl.

The Squeeze Theorem then implies that ( l)m% : fe(z,y) = 0= f.(0,0). A similar argument
z,y)—(0,0

given below shows that ( l)in%o ) fy(x,y) =0= f,(0,0).
2,y)—(0,

ol (2* + 22%y% + ) | |xl(22%y°)

<
’fy(%y)‘ = (:U2 + y2)2 (x2 + y2)2
jzl(a? +9%)* | 202|(2® +y°)(2* + y?)
(2% +y?)? (% +9?)
= 3lz|.
This function is quite special since
62f . fx(ovk) _fx(oyo) . —k -0
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This shows that the second mixed partial derivatives at (0,0) in one order are different from
the other order, i.e.

fﬂ?y(()?()) =—1 7é 1= fyx(oao)



