Short Answer Give complete answers to $\underline{4}$ of the 5. (3.25 points each)

1. Explain why a convergent sequence $\left\{\mathbf{x}_{k}\right\} \subset \mathbb{R}^{n}$ is a Cauchy sequence.

If $\left\{\mathbf{x}_{k}\right\}$ is convergent then for $\epsilon>0$ there is a positive integer N such that if $k \geq N$ then $\left\|\mathbf{x}_{k}-\mathbf{a}\right\|_{2}<\epsilon / 2$. Choose $m, n \geq N$ then

$$
\left\|\mathbf{x}_{m}-\mathbf{x}_{n}\right\|_{2} \leq\left\|\mathbf{x}_{m}-\mathbf{a}\right\|+\left\|\mathbf{a}-\mathbf{x}_{n}\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

2. Let $H=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$. Suppose $f: H \rightarrow \mathbb{R}$ is continuous. Provide full explanations for each of the following.
(a) f achieves its extreme value on H.

Since H is compact and f is continuous the Extreme Value Theorem implies that f achieves its exteme values on H.
(b) The image $f(H)$ is a closed bounded interval.

The continuity of f implies $f(H)$ is compact and hence closed and bounded. The set H is connected and so continuity of f implies $f(H)$ is connected. Since the only connected sets of \mathbb{R} are intervals we have that $f(H)$ is a closed bounded interval.
3. Suppose $\lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)=\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)=L$. Does this imply $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L ?$ Prove or find a counterexample.
No. Let $f(x, y)=\left\{\begin{array}{ccc}\frac{x y}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\ 0 & ; & (x, y)=(0,0)\end{array}\right.$ Note that

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)=\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)=0
$$

but $f(x, x)=\frac{1}{2}$.
4. Show that $5 x+3 y-2 z=\frac{1}{2}$ is the tangent plane to the function
$f(x, y)=\frac{2}{\pi} \sin [\pi(x+y)]-x y$ at the point $\left(\frac{1}{2},-\frac{1}{2}\right)$.
Note that $f(1 / 2,-1 / 2)=1 / 4$ and $\nabla f(x, y)=[2 \cos [\pi(x+y)]-y, 2 \cos [\pi(x+y)]-x]$. Therefore
$\nabla f(1 / 2,-1 / 2)=\left[\frac{5}{2}, \frac{3}{2}\right]$ and so the normal vector is $\mathbf{n}=[5 / 2,3 / 2,-1]$. The equation of the tangent plane is then given by $\mathbf{n} \cdot[x-1 / 2, y+1 / 2, z-1 / 4]=0$. Or

$$
\frac{5}{2}\left(x-\frac{1}{2}\right)+\frac{3}{2}\left(y+\frac{1}{2}\right)-z+\frac{1}{4}=0 .
$$

Simplifying gives $5 x+3 y-2 z=\frac{1}{2}$.
5. Where is the function $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\mathbf{f}(x, y)=\left[2 x y, x^{2}-y^{2}\right]$ one-to-one with a differentiable inverse?
We have that

$$
D \mathbf{f}(x, y)=\left[\begin{array}{cc}
2 y & 2 x \\
2 x & -2 y
\end{array}\right]
$$

and so the Jacobian $\Delta_{\mathbf{f}}(x, y)=-4\left(x^{2}+y^{2}\right) \neq 0$ provided $(x, y) \neq(0,0)$. Therefore \mathbf{f} will be one-to-one for any $(x, y) \neq(0,0)$ and in a neighborhood of that point will have a differentiable inverse.
$\underline{\text { Problems Provide complete solutions for } \underline{6} \text { of the 7. (8 points each) }}$

1. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous. Show if $c \in \mathbb{R}$, then the set $V=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x})<\right.$ $c\}$ is open.
Note that the set $B=\{t \in \mathbb{R}: t<c\}$ is open. Indeed, if $t \in B$, set $\delta=(c-t) / 2$ then $(t-\delta, t+\delta) \subset B$. Consider the set $f^{-1}(B)=\left\{x \in \mathbb{R}^{n}: f(x)=t\right.$ for some $\left.t \in B\right\}$. But, if $f(x)=t$ and $t \in B$ we have $f(x)=t<c$ and so $f^{-1}(B)=\left\{x \in \mathbb{R}^{n}: f(x)<c\right\}$ and since B is open and f is continuous, $f^{-1}(B)$ is open.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x^{2} y}{x^{2}+y^{2}} & ; & (x, y) \neq(0,0) \\
0 & ; & (x, y)=(0,0)
\end{array}\right.
$$

(a) Show $f(x, y)$ is continuous on all of \mathbb{R}^{2}.

Since f is a rational function it is continuous for $(x, y) \neq(0,0)$. We need to show that f is continuous, i.e., $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. Note that

$$
|f(x, y)| \leq \frac{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}}=\sqrt{x^{2}+y^{2}} .
$$

Therefore by the Squeeze Theorem $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
(b) Let $\mathbf{u}=\left[u_{1}, u_{2}\right]$ be a unit vector, i.e., $\|\mathbf{u}\|_{2}=1$. Show the directional derivative of f along \mathbf{u} at $(0,0)$ is

$$
\left(D_{\mathbf{u}} f\right)(0,0)=u_{1}^{2} u_{2}
$$

Does this imply that f is differentiable at $(0,0)$? Prove your answer.
Note that

$$
\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{3}\left(u_{1}^{2} u_{2}\right)}{t\left[t^{2}\left(u_{1}^{2}+u_{2}^{2}\right]\right.}=\frac{u_{1}^{2} u_{2}}{u_{1}^{2}+u_{2}^{2}}=u_{1}^{2} u_{2}
$$

since $u_{1}^{2}+u_{2}^{2}=1$. This does not imply that f is differentiable at $(0,0)$. Note that

$$
\lim _{h \rightarrow 0} \frac{f(h, 0)}{h}=\lim _{k \rightarrow 0} \frac{f(0, k)}{k}=0
$$

and so $f_{x}(0,0)=f_{y}(0,0)=0$ implying that $D f(0,0)=[0,0]$ possibly. For this to hold we must show

$$
\lim _{(h, k) \rightarrow 0} \frac{f(h, k)-f(0,0)-D f(0,0) \cdot[h, k]}{\sqrt{h^{2}+k^{2}}}=\lim _{(h, k) \rightarrow(0,0)} \frac{f(h, k)}{\sqrt{h^{2}+k^{2}}}=0 .
$$

Set $G(h, k)=\frac{f(h, k)}{\sqrt{h^{2}+k^{2}}}=\frac{h^{2} k}{\left(h^{2}+k^{2}\right)^{3 / 2}}$ and note

$$
G(h, h)=\frac{h^{3}}{2^{3 / 2} h^{3}}=\frac{1}{2^{3 / 2}} \neq 0 .
$$

Therefore f is not differentiable at $(0,0)$.
3. Let $U \subset \mathbb{R}^{n}$ be a polygonally connected set. A point $\mathbf{a} \in \mathbb{R}^{n}$ is said to be cluster point of U if and only if for all $\delta>0, B_{\delta}(\mathbf{a})$ contains infinitely many points of U.
(a) Show that the set of cluster points of U is $\stackrel{\circ}{U} \cup \partial U$.

Note that $\bar{U}=\stackrel{\circ}{U} \cup \partial U$, and \bar{U} is the set of cluster points of U.
(b) Show \mathbf{a} is a cluster point of U if and only if for $\delta>0, U \cap B_{\delta}(\mathbf{a}) \backslash\{\mathbf{a}\} \neq \emptyset$.

Let a be a cluster point of U and let $\delta>0$. Then since $B_{\delta}(\mathbf{a}) \cap U$ contains infinitely many points of U so does $B_{\delta}(\mathbf{a}) \cap U \backslash\{\mathbf{a}\}$, and hence is nonempty. If $B_{\delta}(\mathbf{a}) \cap U \backslash\{\mathbf{a}\} \neq \emptyset$ for any $\delta>0$, choose $\mathbf{x}_{1} \in B_{1}(\mathbf{a}) \cap U \backslash\{\mathbf{a}\}$. Set $r_{1}=\left\|\mathbf{a}-\mathbf{x}_{1}\right\|_{2}$ and choose $\mathbf{x}_{2} \in B_{r_{1}}(\mathbf{a}) \cap U \backslash\{\mathbf{a}\}$ then $\mathbf{x}_{2} \neq \mathbf{x}_{\mathbf{1}}$. Set $r_{2}=\min \left\{\left\|\mathbf{a}-\mathbf{x}_{1}\right\|_{2},\left\|\mathbf{a}-\mathbf{x}_{2}\right\|_{2}\right\}$ and choose $\mathbf{x}_{3} \in B_{r_{2}}(\mathbf{a}) \cap U \backslash\{\mathbf{a}\}$. The \mathbf{x}_{3} is distinct from \mathbf{x}_{2} and \mathbf{x}_{2}. Continuing in this way gives infinitely many points in $B_{\delta}(\mathbf{a})$ for all $\delta>0$.
4. Let $H \subset \mathbb{R}^{n}$ be nonempty and compact. Suppose $\mathbf{f}: H \rightarrow \mathbb{R}^{m}$ is continuous. Prove $r=\sup \left\{\|\mathbf{f}(\mathbf{x})\|_{2}: \mathbf{x} \in H\right\}$ is finite and there exists an $\mathbf{x}_{0} \in H$ such that $r=\left\|\mathbf{f}\left(\mathbf{x}_{0}\right)\right\|_{2}$. Since \mathbf{f} is continuous and H is compact, then $\mathbf{f}(H)$ is compact. This implies that $\mathbf{f}(H)$ is closed and bounded and then $\sup \left\{\|\mathbf{f}(\mathbf{x})\|_{2}: \mathbf{x} \in H\right\}$ is finite. Also since $g((x))=\|\mathbf{f}(\mathbf{x})\|_{2}$ is continuous on H, the Extreme Value Theorem implies that g achieves its maximum on H and so there exists a point $\mathbf{x}_{0} \in H$ such that $r=g\left(\mathbf{x}_{0}\right)$.
5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. f is said to be homogeneous of degree k if $f(t \mathbf{x})=t^{k} f(\mathbf{x})$. Show if f is twice continuously differentiable then

$$
(\nabla f)(\mathbf{x}) \cdot \mathbf{x}=k f(\mathbf{x}) \quad \text { and } \quad \mathbf{x}^{\top}\left(\nabla^{2} f\right)(\mathbf{x}) \mathbf{x}=k(k-1) f(\mathbf{x}) .
$$

Here $\left(\nabla^{2} f\right)(\mathbf{x})$ is the Hessian matrix of second partial derivatives evaluates at \mathbf{x}.
Differentiate $f(t \mathbf{x})=t^{k} f(\mathbf{x})$ with respect to t, then $\nabla f(t \mathbf{x}) \cdot \mathbf{x}=k t^{k-1} f(\mathbf{x})$. Setting $t=1$ gives $\nabla f(\mathbf{x}) \cdot \mathbf{x}=k f(\mathbf{x})$. Note if $u_{i}=t x_{i}$ then by the chain rule

$$
\frac{\partial f}{\partial u_{1}} \frac{d u_{1}}{d t}+\cdots+\frac{\partial f}{\partial u_{n}} \frac{d u_{n}}{d t}=k t^{k-1} f(\mathbf{x})
$$

Set $t=1$ gives the same result.

For the second derivative take $n=2$ and consider $f(t x, t y)=t^{k} f(x, y)$. Set $u=t x$ and $v=t y$ then $f_{u} x+f_{v} y=k t^{k-1} f(x, y)$. Taking second derivatives we have

$$
f_{u u} x^{2}+f_{u v} x y+f_{v u} x y+f_{v v} y^{2}=k(k-1) t^{k-2} f(x, y) .
$$

Setting $t=1$ we have

$$
f_{x x} x^{2}+2 f_{x y} x y+f_{y y} y^{2}=k(k-1) f(x, y)
$$

which is the same as

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=k(k-1) f(x, y)
$$

In general we have

$$
f_{u_{1} u_{1}} x_{1}^{2}+\cdots+f_{u_{n} u_{n}} x_{n}^{2}+2 \sum_{1 \leq i<j \leq n} f_{u_{i} u_{j}} x_{i} x_{j}=k(k-1) t^{k-2} f(\mathbf{x}) .
$$

Set $t=1$ we have

$$
\mathbf{x}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{x}=k(k-1) f(\mathbf{x}) .
$$

6. Suppose $\mathbf{f}(u, v, w)=\left[w e^{u} \cos v, w e^{u} \sin v, w^{2}\right]$. Explain why \mathbf{f} is one-to-one in an open set containing the point $\mathbf{p}=(0, \pi, 1)$. Find $(D \mathbf{f})(\mathbf{p})$ and $\left(D \mathbf{f}^{-1}\right)(\mathbf{f}(\mathbf{p}))$.
Note that

$$
D \mathbf{f}(\mathbf{x})=\left[\begin{array}{ccc}
w e^{u} \cos v & -w e^{u} \sin v & e^{u} \cos v \\
w e^{u} \sin v & w e^{u} \cos v & e^{u} \sin v \\
0 & 0 & 2 w
\end{array}\right]
$$

and so

$$
D \mathbf{f}(\mathbf{p})=\left[\begin{array}{ccc}
-1 & 0-1 & \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since $\Delta_{\mathbf{f}}(\mathbf{p})=2 \neq 0$, continuity implies that $\Delta_{\mathbf{f}}(\mathbf{x}) \neq 0$ in an open set containing \mathbf{p}. Hence \mathbf{f} is one-to-one in this open set. The Inverse Function Theorem then implies

$$
\left(D \mathbf{f}^{-1}\right)(\mathbf{f}(\mathbf{p}))=\left[\begin{array}{ccc}
-1 & 0 & -1 / 2 \\
0 & -1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right]
$$

7. Given $f(x, y)=(2 x+y) e^{-4 x^{2}-y^{2}}$, find its local maxima and minima. Are these global extrema? Prove your answer.
The partial derivatives are

$$
f_{x}=e^{-4 x^{2}-y^{2}}\left(2-16 x^{2}-8 x y\right), \quad f_{y}=e^{-4 x^{2}-y^{2}}\left(1-4 x y-2 y^{2}\right)
$$

Solving $f_{x}=0, f_{y}=0$ gives $16 x^{2}+8 x y=2,4 x y+2 y^{2}=1$. If we multiply the second equation by -2 and add it to the first we have $16 x^{2}-4 y^{2}=0$ and so $y= \pm 2 x$. If $y=2 x$ in the first equation we have $32 x^{2}=2$ and so $x= \pm 1 / 4$. If $x=-1 / 4$ then $y=-1 / 2$ and if $x=1 / 4, y=1 / 2$. The critical points are then $\left(\frac{-1}{4}, \frac{-1}{2}\right)$ and $\left(\frac{1}{4}, \frac{1}{2}\right)$.
Note if $y=-2 x$ in the first equation we have $16 x^{2}+8 x(-2 x)=2$ which is not possible. The Hessian is given by

$$
H(x, y)=e^{-4 x^{2}-y^{2}}\left[\begin{array}{cc}
64 x^{2} y+128 x^{3}-48 x-8 y & 32 x^{2} y+16 x y^{2}-8 x-4 y \\
32 x^{2} y+16 x y^{2}-8 x-4 y & 8 x y^{2}+4 y^{3}-4 x-6 y
\end{array}\right]
$$

Now we have that $f_{x x}(-1 / 4,-1 / 2)=12 e^{-1 / 2}>0$ and $\operatorname{det} H(-1 / 4,-1 / 2)=32 e^{-1}>0$ and so $(-1 / 4,-1 / 2, f(-1 / 4,-1 / 2))=\left(-1 / 4,-1 / 2,-e^{-1 / 2}\right)$ is a local minimum. Also $f_{x x}(1 / 4,1 / 2)=-12 e^{-1 / 2}<0$ and $\operatorname{det} H(1 / 4,1 / 2)=32 e^{-1}>0$ and so $(1 / 4,1 / 2, f(1 / 4,1 / 2))=$ $\left(1 / 4,1 / 2, e^{-1 / 2}\right)$ is a local maximum. Since $\lim _{(x, y) \rightarrow \pm(\infty, \text { infty })} f(x, y)=0$ these values are global extrema. The graph of this function is shown below.

